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PART 1

big.LITTLE overview
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What is big.LITTLE?
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big.LITTLE Platform Example

Dual/Quad
Cortex-A7
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ARM Functional Verification phases
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ARM System-level Validation

Execution 
Platforms

Test 
Payloads

Test 
Benches

 Perform “in-system” validation 

of ARM IPs

 Find IP Product bugs from real-

world testing

 (This is not the same as traditional 

SOC validation approach)

 To do this:

 Build configurable System test 

bench 

 Support Emulation and FPGA 

systems. 

 Payload generation tools for 

stress testing

 Plus many supporting automation 

flows and infrastructure
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System testbench – The “Systembench”
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PART 2

Palladium XP Use model
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Palladium XP use model

 Predominantly used as stress testing platform

 Stress mostly from multiple IP configurations and payloads

 Also used to debug failures from other platforms (e.g. FPGA)

 Full vision mode – complete design visibility

 Other PXP features used for software analysis and 

qualification

 LSF Scheduler built over the PXP for scheduling multiple 

different jobs

 Utilize domains effectively

 Allow multiple users/designs/capacities to run simultaneously

 Main objective – Effectively use an expensive resource 
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PXP LSF Scheduler widget



12

SDL Triggers

 Run-time debug feature

 CPU instruction/register/memory trace between two defined 

clock cycles

 Dumping CPU/other IP waveforms between two defined clock 

cycles

 Mechanism for detecting CPU hardware deadlock using 

probes from the test bench

 Exit runs when hangs

 Triggering the end of test by monitoring a hardware register

 Getting dump of memory or CPU caches at known time 

intervals
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Assertions

 Run with all assertions in CPUs, interconnect and other ARM 

IPs

 Mostly OVLs and some SVAs

 AXI bus protocol checkers and violation detectors

 Test bench assertions to debug error scenarios in CPU and 

other ARM IP
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Others

 Save and Restore

 Save states at periodic intervals for long runs

 Restore multiple times with additional debug hooks

 System Verilog Functional Coverage

 Payload qualification for determining stress levels

 E.g. number of snoop transactions 

 ISS Compare in IXCOM

 Compare Instruction executions between model and RTL
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Results

 Bugs found >20 

 ~8 CAT A bugs

 PXP cycles – ~1 trillion per week during maturity phase

 30% on big.LITTLE

 Number of CCI transactions > 14 Billion

 60% on big.LITTLE

 Compile times - ~30 mins

 PXP Statistics:

CPU Cluster-1 CPU Cluster-2 System

Gate count

Palladium XP 

frequency

Palladium XP 

domains

Cortex A7 MP2 Cortex A7 MP2 13 million 1.33 MHz 4 domains

Cortex A15 MP4 Cortex A7 MP4 28.5 million 1.13 MHz 8 domains

Cortex A15 MP4 Cortex A15 MP4 41.4 million 1.02 MHz 11 domains
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Challenges

 System Verilog support

 Fitting multiple big.LITTLE runs 

 Very few configurations tested with GPUs

 Support for Verilog2001 features

 e.g. generate statements

 Initial hardware reliability issues
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Future opportunities

 More SV functional coverage integration 

 Port unit level to system level

 Add system-level instrumentation

 Use UXE 12.1 for some crucial improvements

 IXCOM migration 

 Improve speed issues

 Asynchronous clocking

 Power aware verification

 64-bit CPU System validation
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Questions?

Thank You


