
1

Verifying big.LITTLE

using the Palladium XP
Deepak Venkatesan

Murtaza Johar

ARM India

2

Agenda

PART 1 – big.LITTLE overview

 What is big.LITTLE?

 ARM Functional verification methodology

 System Validation

 System test bench – “Systembench”

PART 2 – Palladium XP Use model

 Palladium XP features used

 Results/statistics

 Future opportunities

3

PART 1

big.LITTLE overview

4

What is big.LITTLE?

5

big.LITTLE Platform Example

Dual/Quad
Cortex-A7

6

ARM Functional Verification phases
U

n
it

T
o

p
S

y
s
te

m

Planning

Requirements

Unit-level Test

benches

development/ bring

up
Unit level

soak testing

Unit level

coverage closure

Unit level

Testing/debug

Planning
Top-level Test bench

development/ bring

up
Top level

random

soak testing (RIS)

Top level

coverage closure

Top level directed

Testing/debug

Planning

system-level

testbench

integration/ bring

up

Si Stress

testing

FPGA stress testing

Emulator System-level s/wTesting/debug

Simulation (100Hz)

Emulation (1MHz)

FPGA(10MHz)

Si(1GHz)

(timelines not to scale)

Sim:1010 cycles

Sim:1010 cycles

Sim:1011 cycles

Sim:1011 cycles

Emu:1012 cycles

FPGA:1015 cycles

Si:1016 cycles

D&T Entry

SPECIFICATION/

PLANNING

TESTING/

DEBUG

alpha beta LACDI Entry

IMPLEMENTATION
COVERAGE

CLOSURE
STRESS TESTING

REL

CONFIDENTIAL7

ARM System-level Validation

Execution
Platforms

Test
Payloads

Test
Benches

 Perform “in-system” validation

of ARM IPs

 Find IP Product bugs from real-

world testing

 (This is not the same as traditional

SOC validation approach)

 To do this:

 Build configurable System test

bench

 Support Emulation and FPGA

systems.

 Payload generation tools for

stress testing

 Plus many supporting automation

flows and infrastructure

8

System testbench – The “Systembench”

9

PART 2

Palladium XP Use model

10

Palladium XP use model

 Predominantly used as stress testing platform

 Stress mostly from multiple IP configurations and payloads

 Also used to debug failures from other platforms (e.g. FPGA)

 Full vision mode – complete design visibility

 Other PXP features used for software analysis and

qualification

 LSF Scheduler built over the PXP for scheduling multiple

different jobs

 Utilize domains effectively

 Allow multiple users/designs/capacities to run simultaneously

 Main objective – Effectively use an expensive resource

11

PXP LSF Scheduler widget

12

SDL Triggers

 Run-time debug feature

 CPU instruction/register/memory trace between two defined

clock cycles

 Dumping CPU/other IP waveforms between two defined clock

cycles

 Mechanism for detecting CPU hardware deadlock using

probes from the test bench

 Exit runs when hangs

 Triggering the end of test by monitoring a hardware register

 Getting dump of memory or CPU caches at known time

intervals

13

Assertions

 Run with all assertions in CPUs, interconnect and other ARM

IPs

 Mostly OVLs and some SVAs

 AXI bus protocol checkers and violation detectors

 Test bench assertions to debug error scenarios in CPU and

other ARM IP

14

Others

 Save and Restore

 Save states at periodic intervals for long runs

 Restore multiple times with additional debug hooks

 System Verilog Functional Coverage

 Payload qualification for determining stress levels

 E.g. number of snoop transactions

 ISS Compare in IXCOM

 Compare Instruction executions between model and RTL

15

Results

 Bugs found >20

 ~8 CAT A bugs

 PXP cycles – ~1 trillion per week during maturity phase

 30% on big.LITTLE

 Number of CCI transactions > 14 Billion

 60% on big.LITTLE

 Compile times - ~30 mins

 PXP Statistics:

CPU Cluster-1 CPU Cluster-2 System

Gate count

Palladium XP

frequency

Palladium XP

domains

Cortex A7 MP2 Cortex A7 MP2 13 million 1.33 MHz 4 domains

Cortex A15 MP4 Cortex A7 MP4 28.5 million 1.13 MHz 8 domains

Cortex A15 MP4 Cortex A15 MP4 41.4 million 1.02 MHz 11 domains

16

Challenges

 System Verilog support

 Fitting multiple big.LITTLE runs

 Very few configurations tested with GPUs

 Support for Verilog2001 features

 e.g. generate statements

 Initial hardware reliability issues

17

Future opportunities

 More SV functional coverage integration

 Port unit level to system level

 Add system-level instrumentation

 Use UXE 12.1 for some crucial improvements

 IXCOM migration

 Improve speed issues

 Asynchronous clocking

 Power aware verification

 64-bit CPU System validation

18

Questions?

Thank You

